Chapter 5 Review

TRIANGLE MIDSEGMENT POSTULATE

The m	nidsegment is	to the	_ side
and _	the length of the	side.	

Perpendicular Bisector Postulate

POK

If a point lies on the _____ from the

of a segment, then it is _____ from the

endpoints

Angle Bisector Postulate

If a point lies on the _____ from the of an angle, then it is _____ from the sides of the angle.

Points of Concurrency

What do you need to make the following?

Circumcenter -	
Incenter	
Orthocenter	
Centroid -	

Special Properties of Points of Concurrency

			4	
 roi	IM		nto	
		ILE	nte	:

1)		

2) _____

Incenter

- 1) _____
- 2) _____

Centroid

- 1) _____
- 2) _____

Location of the point of concurrency

Possible answers: Inside, Outside, On a side, on a vertex

Point of Concurrency	Acute Triangle	Obtuse Triangle	Right Triangle
Circumcenter			
Incenter			
Orthocenter			
Circumcenter			

SIDE-ANGLE INEQUALITY POSTULATE

TRIANGLE INEQUALITY POSTULATE

The sum of the lengths of any two sides of a triangle is _____ the length of the side.